Amino acid preferences for a critical substrate binding subsite of retroviral proteases in type 1 cleavage sites.
نویسندگان
چکیده
The specificities of the proteases of 11 retroviruses representing each of the seven genera of the family Retroviridae were studied using a series of oligopeptides with amino acid substitutions in the P2 position of a naturally occurring type 1 cleavage site (Val-Ser-Gln-Asn-Tyr Pro-Ile-Val-Gln; the arrow indicates the site of cleavage) in human immunodeficiency virus type 1 (HIV-1). This position was previously found to be one of the most critical in determining the substrate specificity differences of retroviral proteases. Specificities at this position were compared for HIV-1, HIV-2, equine infectious anemia virus, avian myeloblastosis virus, Mason-Pfizer monkey virus, mouse mammary tumor virus, Moloney murine leukemia virus, human T-cell leukemia virus type 1, bovine leukemia virus, human foamy virus, and walleye dermal sarcoma virus proteases. Three types of P2 preferences were observed: a subgroup of proteases preferred small hydrophobic side chains (Ala and Cys), and another subgroup preferred large hydrophobic residues (Ile and Leu), while the protease of HIV-1 preferred an Asn residue. The specificity distinctions among the proteases correlated well with the phylogenetic tree of retroviruses prepared solely based on the protease sequences. Molecular models for all of the proteases studied were built, and they were used to interpret the results. While size complementarities appear to be the main specificity-determining features of the S2 subsite of retroviral proteases, electrostatic contributions may play a role only in the case of HIV proteases. In most cases the P2 residues of naturally occurring type 1 cleavage site sequences of the studied proteases agreed well with the observed P2 preferences.
منابع مشابه
Mutational analysis of the substrate binding pockets of the Rous sarcoma virus and human immunodeficiency virus-1 proteases.
Mutations, designed by analysis of the crystal structures of Rous sarcoma virus (RSV) and human immunodeficiency virus type 1 (HIV-1) protease (PR), were introduced into the substrate binding pocket of RSV PR. The mutations substituted nonconserved residues of RSV PR, located within 10 A of the substrate, for those in structurally equivalent positions of HIV-1 PR. Changes in the activity of pur...
متن کاملInternally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8.
Subsite interactions are considered to define the stringent specificity of proteases for their natural substrates. To probe this issue in the proteolytic pathways leading to apoptosis we have examined the P(4), P(1) and P(1)' subsite preferences of human caspases 1, 3, 6, 7 and 8, using internally quenched fluorescent peptide substrates containing o-aminobenzoyl (also known as anthranilic acid)...
متن کاملInterdependence of Inhibitor Recognition in HIV-1 Protease
Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease usi...
متن کاملStructural determinants of autoproteolysis of the Haemophilus influenzae Hap autotransporter.
Haemophilus influenzae is a gram-negative bacterium that initiates infection by colonizing the upper respiratory tract. The H. influenzae Hap autotransporter protein mediates adherence, invasion, and microcolony formation in assays with respiratory epithelial cells and presumably facilitates colonization. The serine protease activity of Hap is associated with autoproteolytic cleavage and extrac...
متن کاملIn vitro assay for site-specific proteases using bead-attached GFP substrate.
Site-specific proteases, which catalyze cleavage of peptide bonds in specific amino acid sequences of target proteins, play important roles in various biological events of many living organisms. In humans, disruption in regulation of these site-specific proteases can lead to pathological consequences. Here, we report a simple in vitro assay for enzymatic activities of site-specific proteases. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 79 7 شماره
صفحات -
تاریخ انتشار 2005